
N95-17248
i:_ : i) "¸

:_ _i: il_

i_1I,):/

,:.,.:.//_ ii_i_ ::?" :"•i,_(:/

: SAFETY ASPECTS OF SPACECRAFT COMMANDING

:2/: i:iiiiii :iii:
:: Mr. N. Peccia/

European Space Operations Centre (ESOC),

Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

?., •

i i'/_I_:

ABSTRACT

The commanding of spacecraft is a potentially

hazardous activity for the safety of the

spacecraft. Present day control systems contain

safety features in their commanding subsystem

and in addition, strict procedures are also

followed by operations staff.

However, problems have occurred on a
number of missions as a result of erroneous

commanding leading in some cases to

spacecraft contingencies and even to near loss

of the spacecraft. The problems of checking

commands in advance are increased by the

tendency in modem spacecraft to use

blocked/time-tagged commands and the

increased usage of on-board computers, for

which commands changing on-board software

tables can radically change spacecraft or

subsystem behaviour.

This paper reports on an on-going study. The

study aims to improve the approach to safety

of spacecraft commanding. It will show how

ensuring "safe" commanding can be carried

out more efficiently, and with greater

reliability, with the help of knowledge based

systems and/or fast simulators.

The whole concept will be developed based on

the Object-Oriented approach.

Keywords: Telecommanding, Safety,

Predictive Knowledge, Object
Oriented

1. INTRODUCTION

This paper gives an interim report on a study

of the safety aspects of spacecraft

commanding. The overall aim of the study is

to demonstrate the feasibility of model-based

command checking.

The study examines user requirements for such

a system. Based upon these requirements the

functional requirements and the architectural

design is being produced. Finally a prototype

of at least the basic mechanisms of the design

will be developed and demonstrated.

The whole concept will be developed based on

the Object-Oriented approach. The common

environment must provide the different

spacecraft users with the same kind of user
interface facilities in order to offer a consistent

operational environment.

The ESA SCOS II system (under development)

is being taken as th_ reference system to be

interfaced. SCOS II will operate in a hardware
and basic software environment that is vendor-

independent.

The function of a SCOS II (Spacecraft

Control Operations System) system are seen as

a collection of independent models of various

parts of the spacecraft and the ground

segment. SCOS II will therefore provide a

library of 'building blocks', which can be

combined in various ways to produce the

overall model. To allow this to be done easily,

PAG Z NOT RLME' 599

object-oriented software engineering
technology has been updated for analysis and

implementation of SCOS II. Specifically the
Coad/Yourdon method and the C+ +

programming language have been chosen.

Not all missions are the same, which led to

make modifications to the library building

blocks to be used in a specific mission. Using

an object-oriented technique known as

'inheritance', it will be possible to provide a

customised building block for a given mission,

whilst maintaining the same interface.

The SCOS II system will be hosted on a Local

Area Network (LAN) of distributed UNIX

workstations. Some centralised services of the

system will be provided by server processors

(client-server concept). The use of a

distributed system also offers advantages in

terms of system availability and failure
tolerance.

An initial delivery of the SCOS II system is
foreseen for end 1994. It will contain basic

functions of the system. The Huyghens-

Cassini, Envisat and XMM spacecrafts will
make use of the SCOS II infrastructure

software.

2. BACKGROUND

2.1 CURRENTSTATUS

It is useful to describe first the general ESOC

approach to handling of commands by the

Mission Control System (MCS) for currently

supported missions, which however can be

significantly modified for specific missions.

• Command Preparation Checking

In the command database to determine

allowable ranges of parameters, etc.

600

Automatic checks on "manual or

automatic stacks of commands" at time

of entry of command parameters.

Pre-Transmission Validation (PTV) of

commands

The normal route for all commands

involves a pretransmission validation

(PTV) before the command is passed to

the ground station for uplink. PTVs are
defined in the command database.

Checks normally performed in PTV

are:

TC configuration (e.g. check that the

TC subsystem has not been disabled)

Spacecraft and subsystem status, as

computed from incoming telemetry

parameters. The TM parameters and

the mode computation are specified in
the command database. PTV can be

disabled by the operator and by the
command source. PTV does not

provide for limit checking or other
checks of individual command

parameters or of parameters sets.

Checking of command contents

This is not a standard facility on the

ESOC Mission control system; it varies

from one mission to the other. Any

such checks performed are limited
since :

They are only static limit checks (e.g.

lower and upper limits) on individual

parameters.

Many commands cannot be checked

against fixed limit checks alone

because of interdependence between

: ::j/i ¸

• /?•!

_!!i:iii?

ili_J_i_i:i_

i,_,::_::

• • ,: >-
-Qi_i ?i ii

, _i _ .

i¸¸ ?

'i

parameters.

The correctness of multiple command

activities cannot correctly be checked.

Command parameters are obviously

important parts of a command and for
some commands the value of the

parameters can be vital for the

spacecraft safety.

No on-line checking of combination of

commands and command parameters nor pre-

execution validation of commands against

predicted spacecraft status is carried out or

envisaged for current "in flight" or near future

missions (ERS-2, ISO, CLUSTER)

2.2 PLANNED DEVELOPMENTS

Future missions to be supported by the ESA

SCOS II (under development) will be

controlled using approaches to commanding

which are likely to differ significantly from the

current one. Special services should be

provided to increase the safety of

commanding. Two additional types of
conditions will be used in making these safety

checks :

a predicted set of conditions in the on-

board status applicable at the (future)

time of execution (and not necessarily

at the time of release)

a set of "operational constraint" rules

to be obeyed following command
execution.

These checks are carried out based on a

prediction of the on-board status at the planned

execution time (Predictive Knowledge). Thus

a capability to propagate the on-board status

needs to be available for all the potential

601

sources of commands (Manual Command, on-

board Master Schedule and ground automatic

command files).

Predictive Knowledge allows the prediction of

future states of the system under control
(satellite modes, measurements, etc) from a

"known initial state" and taking into account

planned commanding activities and predicted
mission events.

This Predictive Knowledge can be produced in

two ways •

Evolution of the system in the absence

of any commanding activity (Evolution

Predictive Knowledge)

Evolution of the system under the

influence of Telecommanding

(commanding Predictive Knowledge).

In addition , detected or predicted on-board

autonomous actions can be treated in an

analogous manner to telecommand actions.

Specific attention shall be given to the

handling of asynchronous on-board actions

(these are often the result of failures and

related on-board corrective actions).

This knowledge may be in the form of

algorithmic, heuristic or mathematical models.

The predictions will be required both over a

short term (e.g. for satellite health monitoring)

and over a long term (e.g. to validate a plan

spanning several days).

3. OVERALL APPROACH

The study has the following steps :

• Problem, methodology analysis and

evaluation of the ESOC requirements

• Software Requirements Phase

Architectural design of the system

Prototyping and demonstration of the

basic design

4. BASIC REQUIREMENTS

The central idea is the use of a Model of the

satellite. The definition of this Model of the

spacecraft is the most critical part of the study.

It is of course of major importance that the

real system is modelled as close as possible.

The Model has to run quickly to allow

predictions for some time in the future

(typically 48 hours for EURECA) in case of

on-board time-tagged commands checking.

During operations this Model must be capable

to be connected to (or be a part of) the

spacecraft control system whereas during the

validation phase to the Expert Tool system for

FOP (Flight Operation Procedures)

production. The following scenarios are
considered :

a. "On-line" : The Model is part of the

mission Control System (SCOS II),

and each command is checked (.e.g

for consistency with the modelled

"image" of the spacecraft) before

being released for uplinking to the

spacecraft.

b. "Near Realtime" : The set of

commands to be sent to the spacecraft

(either from Manual Command or

Automatic Schedule) are previously

uplinked (or could be done "directly"

by the system) to the Model respecting

the "timelining" (timing and ordering

of activities). This should allow the

user to view the changing state of the

Model while it is being "operated" and

will also perform concurrent safety

checking and validation of the

operations in each scenario exercised.

The command validation function (in

the Model) should use the Predictive

Knowledge of the impact of the

command (together with any other

planned or predictable actions) to

cause the rejection of a TC based on

predicted effects which violate any
health criteria. This information will be

passed to SCOS II, which will inhibit

the uplink of the command.

During Planning validation (sequence

of commands as output of the mission

planning) it will normally be necessary

to propagate the mission state during

the planning interval in order to :

establish that pre- and post-
conditions for activities are

fulfilled

to confirm that health criteria

are continuously satisfied

during the planning interval

C. "Off-line": User selected Flight

Control Procedures (FCP),

Contingency Recovery Procedures

(CRP) or timelines shall be applied to
the Model in order to validate the

operations (Procedure Validation).

The following Model operating scenario could

be envisaged •

The Model is initialised with the

available TM in order to synchronize
the its internal state with the real state

of the spacecraft.

602

HHH_HH

:S!i :¸ i" "?

_!i̧ ¸ "! i: •i

ii:•iili_ i_:̧

;" _!!_;_i_ii

i

!if!__i_iiii!i_

ili?ii!i!;i

(i

ili__i:

As a second step the Model is let to

evolve by means of a prediction

generation function, taking into account

the planned on-board mission events

and / or commanding activities.

The Model could also be used as follows:

Verification of commands executed in

the past (e.g. comparison of playback

telemetry and predicted mission status)

Monitoring functions including the

display of predicted telemetry

parameters during "non visibility"

periods.

Diagnosis : The deviations of predicted

values from the expected ones could be

detected and analysed. To this aim a

knowledge not completely contained in

the Model is required (e.g. diagnosis
charts and fault trees contained in the

spacecraft Operations Requirement
Handbook)

The Model is a central concept on this study.

It predicts mission states related to future

mission times. The selected approach is based

on two types of model :

A complete Model for near real time
and off-line scenarios

Detailed spacecraft subsystems models

are developed at ESOC for each

mission, as part of spacecraft dynamic
simulators used for validation of

control system software and Flight
Control Procedures as well as for staff

training. This type of simulators run 30
times faster than real time when

running on an ALPHA VAX platform.

The Model is extracted from an

existing spacecraft simulator. It shows

the best precision in the states

prediction in spite of a lower speed.
For this reason it will be used when

greater accuracy is required.

A simplified Model using knowledge
based techniches for real time scenarios

High speed performances are met but a

lower accuracy in the computation of

predicted states is shown. The Model is

build up extracting the mission

information from a selected repository

(e.g. the Mission base in SCOS II)

and adding manually the missing
information.

This two Model approach should be used for
model validation. In order to trust such a

system strong emphasis should be put into the

verification and validation of the models.

5. SOFTWARE REQUIREMENTS

The Software Requirements Document defines

the functional requirements of the system

according to the SCOS II Development
Standards.

The document covers the system functionality,

outlines standards for input and output data

which they should handle, and shows how they

should interface to the wider operational
environment in the future.

The whole concept is being developed based

on the Object Oriented approach. The expected

benefits of OO for the Model of the spacecraft
are •

natural modelling of the architecture of

the spacecraft

603

• of • Model O0 Diagram

_iI •

<

i_I •

:<

!?

flexibility (via properties

inheritance and polymorphism)

different levels of abstraction,

permitting viewing of the Model at

different levels of complexity

• potential of reusability

The design and implementation of the system

should support the Object Oriented Paradigm.

The system should interface with SCOS II and

should be based on "open architecture" so as

to allow for additionally functionalities via
added modules.

The system has to be based on UNIX, and

developed and maintained on SUN platforms.

However it will be capable to run on any of

the main line of available UNIX platforms

(e.g. SUN, HP, IBM and Digital).

The main constraints are the following:

The system should access the SCOS II
Mission Information Base to derive the

Predictive Knowledge, the operational
constraints and the execution

verification criteria. The user should

not insert significant additional
information.

The system should not cause detectable

performance degradation on SCOS II

real operations.

The system should have the capability

of synchronizing its internal Model

status with the real spacecraft data and
status.

After an Object Oriented Analysis of the

system the following OO diagrams were

produced •

! .

i__, _: _ _ :_ , . _, ::,: .: ,_,

604

It focuses both on the Model related

abstraction level and on the high level

internal decomposition of the system.

The two Model approach is introduced

as a keypoint in the whole system

organization. A "complete" Model

cooperates with a "simplified" one to

obtain the best performances in terms

of accuracy and computation speed.

• Database level OO Diagram

It shows the database internal

organization focusing on the elements

needed to build the Model (e.g.

system element, activity, application

criteria of system elements, verification
and validation criteria of activities)

• Operational Context Diagram

It describes the different operational

scenarios, particularly the real time

case which is the most complex one

The following interfaces are envisaged:

SCOS II command stacks (e.g. manual

and automatic stacks)

• SCOS II Mission Implementation Base

Display of system outputs on SCOS II
Man Machine Interface

Telemetry acquisition from SCOS II

telemetry Processor

Flight Operations Procedures Set Tool

to read and process Flight Operation
Procedures in the off-line case

• Model of an existing spacecraft

ui:_,

• ii_ _ ::i

simulator to be used as the "complete"

Model

6. CONCLUSIONS

At the time of writing this paper (July 1994)

the Architectural Design Phase is in progress.

This phase defines the architectural concept,

considering all functions and also how the

system should support future expansion and

modification of functionality. The

Architectural Design Document should include

detailed descriptions of all critical design

elements, such as data storage architecture and

access methods, control data structures,

knowledge representation and all external data
interfaces.

During a second phase the study should

produce the following -

o

I.

2.

3°

4.

REFERENCE DOCUMENTS

ESA Software Engineering Standards,

ESA-PSS-05-0 Issue 2. February 1991

SCOS II Development Standards,

SCOS II-CON-001, Issue 1, January 1993

SCOS II User Requirement Document, Issue 1. March

1993

SCOS II Software Requirement Document. Draft 2, May

1993

SIMSAT Simulator Designers Manual, Issue 1, May 1993

Study "Safety Aspects of Spacecraft Commanding"

Problem Analysis and Concept Definition, Dataspazio,

March 1994

Study "Safety Aspects of Spacecraft Commanding"

Software Requirements Document, Dataspazio, June 1994

"Object oriented analysis", Peter Coad & Ed Yourdon, 2nd

edition, Prentice Hall. 1991

O A detailed Design and implementation

of a prototype. A spacecraft subsystem

should be identified to develop such a

prototype (a partial Model). It will be

integrated with the SCOS II system at
ESOC

A Detailed Design Document (DDD)

of the prototype

),

A Software User Manual (SUM) of

the prototype

This study aims to produce a prototype to

improve the approach to safety of spacecraft

commanding by using model-based command

checking systems. This philosophy can then be

used for upcoming ESA missions such as those

of XMM and Integral.

605

